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ew approach to fuzzy confidence interval identification. The method combines a
fuzzy identification methodology with some ideas from applied statistics. The idea is to find, on a finite set of
measured data, the confidence interval defined by the lower and upper fuzzy bound that define the band that
contains all the output measurements. The method can be successfully used whenwe are trying to describe a
family of uncertain nonlinear functions or when we are trying to find the interval for a nonlinear process
output where all the measurements can be found. The fuzzy confidence interval model can be used in process
monitoring, fault detection or in the case of robust control design. In our example the proposed method is
used for waste-water treatment plant modeling, which exhibit a very nonlinear behavior.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction
The problem of nonlinear model identification from a finite set of
measured data using an optimality criterion has received a great deal
of attention in the scientific community. Many different approaches
have appeared to approximate functions from data, these include the
following: the continuous piecewise linear (PWL) approach, where it
is possible to uniformly approximate any Lipschitz continuous func-
tion defined on a compact domain using linear functions [7]; the
neural-network approach [9], which is universal approximation, but
has a drawback in the sense of the interpretability of the result; and
the fuzzymodel approach,which inTakagi–Sugeno (TS) form, approxi-
mates the nonlinear system by smoothly interpolating affine local
models [11] with, each local model contributing to the global model in
a fuzzy subset of the space characterized by a membership function.

In this paper we look at the development of a confidence interval
approximation based on a fuzzy model. This results in a lower and an
upper fuzzy bounds. The interval fuzzy model identification is a meth-
odology for approximating the nonlinear functions of a finite set of
input and output measurements that can also be used to compress the
information in the case of an approximation of a nonlinear function
family to obtain the interval or the band containing the whole set of
measurements. The interval fuzzy model approach is described in [4]
and [10], where the linear programming approach is used to obtain
the fuzzy confidence interval, and in [6], where the confidence band
is obtained using a least-squares optimization and a constant variance
is assumed across thewhole problem domain. In our approach the var-
iance of the noise can vary, i.e. the method can cope with a hetero-
skedastic noise.
ll rights reserved.
The proposedmethod is of great importance inmany technological
areas, e.g., the modeling of nonlinear time-invariant systems with un-
certain physical parameters. In our example the method of confidence
interval modeling is used to model the behavior of a waste-water treat-
ment plant. These types of plants are, due to their nature, subjected to
daily, weekly and seasonal variations because of temperature changes,
rain and a varying process load. In the case of a waste-water treatment
plant the theoretical modeling is a very demanding task with ques-
tionable results. For this reason the methods of data mining have been
adopted. However, we were not able to find a nonlinear model which
will approximate the behavior of the plant for thewhole set ofmeasured
data i.e., with a sufficiently small error, but we could find the confidence
interval in which we always find the output variable.

The paper is organized as follows: Section 2 provides the back-
ground to the fuzzy modeling; Section 3 describes the idea of fuzzy
confidence interval model identification; Section 4 introduces the
confidence interval of the local linear model; and Section 5 presents
an application of the confidence interval modeling.

2. Nonlinear model described in fuzzy form

A typical fuzzy model [11] is given in the form of rules

Rj1 ; N ; jq
: if xp1 is A1; j1 and xp2 is A2; j2 and N and xpq is Aq; jq

then y = /j1 ; N ; jq
xð Þ

j1 = 1; N ;m1 j2 = 1; N ;m2 N jq = 1; N ;mq

ð1Þ

The q-element vector xpT=[xp1,…, xpq] denotes the input or variables
in premise, and the variable y is the output of the model. With each
variable in premise xpi (i=1,…, q), fi is connected to the fuzzy sets (Ai,1,
…, Ai,mi

), and each fuzzy set Ai,ji (ji=1,…, mi) is associated with a real-
valued function μAi;ji

xpi
� �

: RY 0;1½ � that produces the membership
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A list of used symbols

Rj1,…, jq, Rj, the fuzzy rule
Ai,j, the jth fuzzy set of ith variable in the rule premise
ϕj1,…, jq, ϕj the function in the fuzzy rule consequence
βj(xp) the degree of fulfillment for jth rule
S the set of measured data
Xp the set of data in the rule premise
X the set of data in the rule consequence
Y the set of output data
xp the vector of variables in the premise part of the rule
x the vector of variables in the consequence part of

the rule
yi the output at time instant i
yi,j the output of the jth local linear model at time

instant i
ψj the input vector xweighted by the degree of fulfill-

ment βj(xp)
θj the set of coefficient of jth linear model
Θ the matrix of coefficients of all local linear models
ei the error between the outputmeasurement and the

estimated output value
ei,j the error between the weighted output measure-

ment and the estimated output of jth local linear
model

f__, f
__

the lower and upper fuzzy function
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grade of the variable xpiwith respect to the fuzzy set Ai,ji. To make the
list of fuzzy rules complete, all possible variations of the fuzzy sets
given in Eq. (1) are required. This gives the number of fuzzy rules
m=m1×m2×…×mq. The variables xpi are not the only inputs of the
fuzzy system. Implicitly, the n+1-element vector xT=[1,x1,…, xn] also
represents an input to the system. It is usually referred to as the
consequence vector. The functions ϕj1,…,jq(·) can be arbitrary smooth
functions in general, although linear or affine functions are normally
used. This means that the rule Rj1,…,jq can consequently also be denoted
as Rj, where j means

j = j1 + j2 − 1ð ÞΠ1
i = 1mi + j3 − 1ð ÞΠ2

i = 1mi + N + jq − 1
� �

Πq − 1
i = 1mi;

where j1=1,…, m1, j2=1,…, m2,…, jq=1,…, mq. The same notation
can also be used for the function ϕj1,…, jq(·).

The fulfillment of the rule Rj, i.e., the rule Rj1,…jq means the
fulfillment of the premise of the rule in a normalized form is then
expressed with the functions βj(xp), defined as

βj xp
� �

=
μA1;j1

xp1
� �

μA2;j2
xp2

� �
N μAq;jq

xpq
� �

Pm1

j1 = 1

Pm2

j2 = 1 N
Pmq

jq = 1μA1;j1
xp1

� �
μA2;j2

xp2
� �

N μAq;jq
xpq

� �; ð2Þ

The fulfillment of the rule Rj, denoted as βj(xp), gives information
about the participation of the function ϕj(·) in the whole output
variable. The output variable y is then given as a weighted sum
defined as

y =
Xm

j=1

βj xp
� �

/j xð Þ ð3Þ

A very frequently used structure of the fuzzy model known from
the literature [9] is the structure with the output value defined as a
linear combination of the consequence states

/j xð Þ = xTθj; θTj = θj0; θj1; N ; θjn
h iT

; j = 1; N ;m ð4Þ
In this case, Eq. (3) consists of m local linear models and can be
written as

y =
Xm

j=1

ψT
j θj; j = 1; N ;m; ð5Þ

where

ψT
j = βj xp

� �
xT ð6Þ

We assume a set of measured data defined as the set S={s1,s2,…,
sN}, where si stands for a vector of all the measurements at the time
instant i. From this set the premise vectors Xp={xp1,xp2,…, xpN} and the
set of antecedent (or consequence) vectors X={x1,x2,…, xN} are
constructed by choosing a certain measurement to be a part of Xp or
X. Eq. (6) shows that the output of a fuzzy system is a function of the
premise vector xp (q-dimensional) and the consequence vector x (n-
dimensional). Therefore, the data set Z={z1,z2,…, zN}, where ziT=[xpiT ,
xiT], i=1,…, N, is constructed to simplify the notation in Eq. (6), as
follows

y =
Xm

j=1

ψT
j zð Þθj; j = 1; N ;m; ð7Þ

where ψT
j(z) denotes the dependence on both the input vectors x

and xp.
If the matrix of the coefficients for the whole set of rules is written

as ΘT=[θ1T,…, θmT ], and the fuzzy regression matrix

ψT = ψT
1; N ;ψT

m

h i
ð8Þ

then Eq. (3) can be rewritten in the matrix form

y = ψT zð ÞΘ ð9Þ

The fuzzy model in the form given in Eq. (9) is referred to as the
affine Takagi–Sugeno model and can be used to approximate any
arbitrary function that maps the compact set of inputs to the compact
set of outputs with any desired degree of accuracy [8,12,13]. This
generality can be proven with the Stone–Weierstrass theorem [5],
which suggests that any continuous function can be approximated by
a fuzzy basis function expansion [9]. The parameters of the fuzzy
model Θ are obtained with the least-squares method [11].

3. Fuzzy confidence interval identification

The fuzzy model structure will be used to define the band of lower
and upper bounds, which is called the fuzzy confidence interval. The
basic idea is to find, from a finite set of measured data, the confidence
interval that contains all the output measurements. In the same way
as the sets Xp and X, a set of corresponding outputs is also defined
from the set of measured data S as Y={y1,y2,…, yN} and is the result of
mapping the input data set Z on the nonlinear real continuous
function g. This mapping can be written as follows

yi = g zið Þ; i = 1; N ;N ð10Þ

According to the Stone–Weierstrass theorem, for any given real
continuous function g and arbitrary εN0 , there exists a fuzzy system
such that

max
i

jyi − ψT zið ÞΘ jb�; ð11Þ

where ψT(zi)Θ stands for the output of the fuzzy model for a certain
measured input vector zi. This implies the approximation of any given
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real continuous function with the fuzzy function defined in Eq. (9).
However, it should be pointed out that the lower values of � imply
higher values of the required rules m that satisfy Eq. (11). The answer
lies in the proper arrangement of the membership functions. This is a
well-known problem in fuzzy systems. However, it can be overcome
with a cluster analysis [2,3] or a hierarchical division of the input
space, or other approaches. The details will not be discussed in this
paper.

Taking into account Eq. (9) and Eq. (11) the set of data samples can
be written as follows:

yi = ψT zið ÞΘ + ei; i = 1; N ;N ð12Þ

where ei, i=1,…, N, stands for the heteroskedastic noise of zero mean
value, which is written as e=N(0, σ2(xp)), where e=[e1,…, eN]T.

The error between the measured values and the fuzzy function
outputs can be defined as

ei = yi − ψT zið ÞΘ; i = 1; N ;N ð13Þ

By having the membership functions defined, the structure of
the model is known and only the fuzzy model parameters have to
be defined. The parameters of Θ are calculated separately for each
local model. This means that we split Eq. (13) into m equations of
the form

ei;j = yi;j − ψT
i;jθj; i = 1; N ;N; j = 1; N ;m ð14Þ

where ei, j=βi, j ei, yi, j=βi, j yi, ψi, j
T =βi, jψT(zi) and where βi, j=βj(xpi),

i=1,…, N. In matrix form the equation is written as follows

ej = yj − W
T
j θj; j = 1; N ;m ð15Þ

where ej=[e1, j,…, eN, j]T, yj=[y1, j,…, yN, j]T and Ψj=[ψ1, j,…, ψN, j]T.
The vector of the estimated local model parameters is the mini-

mizing argument, which can be expressed as

θ̂j = arg minVj θj
� �

; j = 1; N ;m ð16Þ

where Vj reads as Vj=ejTej. The idea of an approximation can be
interpreted as the most representative local fuzzy function to describe
the local domain of the outputs yj as a function of the inputs z. The
estimation of the local fuzzy model parameters is given by the mini-
mum least-squares optimization, as follows:

θ̂j = WjW
T
j

� �−1
Wjyj ð17Þ

and the estimated output of the jth local fuzzy model is therefore
written as ŷj=ψj

T θ̂j. In a particular case the estimated parameters of the
fuzzy model, taking into account Eq. (15), become θ̂j=θj+ θ̃j, where

~
θj = WjW

T
j

� �−1
Wjej ð18Þ

The expected bias of the local model parameters is then described
as follows:

E θ̂j
n o

= θj + E WjW
T
j

� �−1
Wjej

� �
; j = 1; N ;m ð19Þ

The right term in Eq. (19) equals zero, because of the uncorrelated
regression matrix Ψj, the vector ej, and the zero mean value E{ej}=0.
This can be explained by taking into account the statistical property of
the noise E{e}=0, which implies that the noise of the jth local linear
model, i.e., the weighted mean value E{ej}=0, also equals zero, when
assuming a sufficiently large number of measurements inside a single
fuzzy partitioning. This means that the estimation of the model
parameters is unbiased. The weighted mean value is calculated as
follows:

ej = E ej
n o

=
1
m

XN

i=1

βi;jei; m =
XN

i=1

βi;j; j = 1; N ;m ð20Þ

The expected covariance of the estimated parameters is calculated
in the following way:

cov θj − θ̂j
� �

= E
~
θj
~
θTj

n o
ð21Þ

taking into account that E{θ̃j}=0. Using Eq. (18), the covariance matrix
of model parameters is written as follows

cov θj − θ̂j
� �

= E WjW
T
j

� �−1
Wjeje

T
j W

T
j WjW

T
j

� �−1
� �

= WjW
T
j

� �−1
WjE eje

T
j

n o
W

T
j WjW

T
j

� �−1

ð22Þ

and by taking into account the following notation E{ejejT}= σ̂ j
2I the

covariance matrix is written as follows:

cov θj − θ̂j
� �

= σ̂ 2
j WjW

T
j

� �−1 ð23Þ

where σ̂ j
2 stands for the weighted variance of ej

σ̂ 2
j =

1
μ − n + 1ð Þ

XN

i = 1
β2
i;j ei−ej
� �2

; μ =
XN

i=1

β2
i;j; j = 1; N ;m

ð24Þ

and n+1 stands for the number of estimated parameters of the fuzzy
model.

The expected covariance of the residuals between the observed
data and the model output is given as follows

cov yj − ŷj
� �

= E yj − ŷj − E yj − ŷ
j

n o� �
yj− ŷj−E yj− ŷ

j

n o� �Tn o
:

ð25Þ

Taking into account that E{ej}=0, the expected value of the residue
between the measured output and the estimated output becomes
E{ yj− ŷj}=0.

The covariancematrix of the residuals in Eq. (25) can bewritten as:

cov yj − ŷj
� �

= E ej − W
T
j

~
θj

� �
ej−W

T
j

~
θj

� �Tn o
ð26Þ

and by taking into account Eq. (18), it follows that

cov yj − ŷj
� �

= σ̂ 2
j I − σ̂ 2

j W
T
j WjW

T
j

� �−1
Wj: ð27Þ

3.1. Confidence interval definition

Let usdefinea confidence interval for thenewsetofdata, generatedby
the same function g as in the case of the identification. The corresponding
set of measured output values Y⁎={y1⁎,…, yM⁎ } over the set of measured
inputs Z⁎, i.e., y i⁎=g(z i⁎), i=1,…,M, is called the validation data set.

The idea of confidence interval fuzzy modeling is to find a lower
fuzzy output f_ and an upper fuzzy function f

_
satisfying

P
f z⁎i
� �

V g z⁎i
� �

V f z⁎i
� �

; 8z⁎i : ð28Þ

The main requirement when defining the band is that it is as
narrow as possible and should contain a certain percentage of the
data. This problem has been treated in the literature using the piece-
wise linear function approximation [7]. Our approach, using the fuzzy



Fig. 1. Schematic representation of simulation benchmark.

Fig. 2. The whole set of measurements.

Fig. 3. The distribution of membership functions.
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function approximation, can be viewed as a generalization of the
piecewise linear approach and gives a better approximation, or at least
a much narrower approximation band.

The measured output values of the jth local linear model are now
defined as

y⁎j = W
⁎
j
Tθj + e⁎j ð29Þ

where Ψ j⁎
T stands for the regression matrix of the jth local linear

model and y j⁎=[y1⁎,…,yM⁎ ]
T. The model output of the jth local linear

model is, in the case of the validation data set, defined as follows:

ŷ
⁎

j = W
⁎T
j θ̂j: ð30Þ

To calculate the confidence interval in the case of a validation set,
we have to calculate the expected covariance of the residual between
the model output and the new set of data in each local domain

cov y⁎j − ŷ
⁎

j

� 	
= E y⁎j − ŷ

⁎

j − E y⁎j − ŷ
⁎

j

� �� 	
y⁎j − ŷ

⁎

j−E y⁎j − ŷ
⁎

j

� �� 	T� �
:

ð31Þ

Taking into account the same statistical properties of the noise for
the data in the validation data set (E{e j⁎}=0) and for the identification
set (E{ej}=0), the expected value of the error between the measured
output and the estimated output becomes E{ y j⁎− ŷ j⁎ }=0.

The covariance matrix in Eq. (31) can be rewritten as:

cov y⁎j − ŷ
⁎

j

� 	
= E e⁎j − W

⁎T
j

~
θj

� �
e⁎j −W

⁎T
j

~
θj

� �Tn o
ð32Þ

and subsequently as follows:

cov y⁎j − ŷ
⁎

j

� 	
= E e⁎j e

⁎T
j

n o
− E W

⁎T
j
~
θje

⁎T
j

n o
− E e⁎j

~
θ
T
j W

⁎
j

n o
+ E W

⁎T
j
~
θj
~
θ
T

j
W

⁎
j

n o
:

ð33Þ

Taking into account Eq. (18) and assuming that both the noise
signals have identical statistical properties, E{ejejT}=E{e j⁎e j⁎

T}=σ̂ j
2, and

are uncorrelated E{ejej⁎T}=E{e j⁎ej
T}=0, Eq. (33) is written as follows

cov y⁎j − ŷ
⁎

j

� 	
= σ̂

2

j I + σ̂
2

jW
⁎T
j WjW

T
j

� �−1
W

⁎
j ð34Þ

The lower and the upper confidence intervals of the local linear
model are therefore defined as

P
f j z⁎i
� �

= ψ⁎ T
i; j θj − tα;M−n σ̂ j 1 + ψ⁎T

i; j WjW
T
j

� �−1
ψ⁎
i; j

� 	1
2

; i = 1; N ;M ð35Þ

and

f j z⁎i
� �

= ψ⁎T
i; j θj + tα;M−n σ̂ j 1 + ψ⁎T

i; j WjW
T
j

� �−1
ψ⁎
i; j

� 	1
2

; i = 1; N ;M ð36Þ

where tα,M−n stands for the percentile of the t-distribution for 100(1−2α)
percentage confidence interval withM−n degrees of freedom.
The lower and upper fuzzy functions are then described as:

P
f z⁎i
� �

=
Xm

i=1
P
f j z⁎i

� �

f z⁎i
� �

=
Xm

i=1

f j z⁎i
� �

ð37Þ

Interval fuzzy modeling can be used efficiently in the case of fault
detection, where the data set of normal operating systems is modeled
by the interval fuzzy model to obtain the band of normal functioning.
During operations this band is calculated online and is checked to see
if a measurement corresponds to the normal functioning band or not.
If the measurement violates the tolerance band, one can assume that a
malfunction might have occurred. The proposed model can also be
used for the case of robust control design, as described in [1].

4. Confidence interval for biological waste-water
treatment process

Waste-water treatment plants are large, nonlinear systems subject
to large perturbations in flow and load, together with uncertainties
concerning the composition of the incoming waste water. The simu-
lation benchmark has been developed to provide an unbiased system



Fig. 6. The validation of fuzzy model.

Fig. 4. The verification of fuzzy model.
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for comparing various strategies without reference to a particular
facility. It consists of five sequentially connected reactors along with a
10-layer secondary settling tank. The plant layout, model equations
and control strategy are described in detail on a www page (http://
www.ensic.u-nancy.fr/costwwtp). In our approach the layout was
formed such that the waste water is purified in the mechanical phase,
and after this phase the moving bed bio-film reactor is used. A
schematic representation of the simulation benchmark is shown in
Fig. 1.

The confidence interval was constructed for the simulation model,
where the following measurements were used: the influent ammonia
concentration in the inflow Q in, defined as CNH4Nin

; the dissolved
oxygen concentration in the first aerobic reactor tank CO2

1 ; the dis-
solved oxygen concentration in the second aerobic reactor tank CO2

2 ;
and the ammonia concentration in the second aerobic reactor tank
CNH4Nout

. All themeasurements define the input data set S={CNH4Nin
(k),

CO2

1 (k), CO2

2 (k), CNH4Nout
(k)}, k=1,… N. The fuzzy model was built to

model the relation between the ammonia concentration in the second
aerobic reactor tank and the other measured variables:

CNH4Nout
k + 1ð Þ = g CNH4Nin

kð Þ;C1
O2

kð Þ;C2
O2

kð Þ;CNH4Nout
kð Þ

� �
ð38Þ

where g stands for the nonlinear relation between the measured var-
iables. The variables are measured with the sampling time Ts=120 s.
The whole set of measurements is shown in Fig. 2.
Fig. 5. The verification of fuzzy model with confidence interval.
The structure of the fuzzy model, which is obtained on the set of
the first 15,000 samples, is as follows taking into account Eq. (1)

Rj : if xp1 kð Þ is A j then y kð Þ = /j x kð Þð Þ; j = 1;2;3 ð39Þ

where xp1 stands for CNH4Nout
(k), xT (k)=[CNH4Nin

(k), CO2

1 (k)(k), CO2

2 (k),
CNH4Nout

(k)] and y(k) is equal to CNH4Nout
(k+1). Taking into account a

local linear function ϕj the following structure is obtained

R j : if CNH4Nout
kð Þ is Aj then

CNH4Nout
k + 1ð Þ = θj0 + θj1CNH4Nin

kð Þ + θj2C
1
O2

kð Þ + θj3C
2
O2

kð Þ + θj4CNH4Nout
kð Þ;

j = 1;2;3: ð40Þ

The input data set was then clustered using the Gustafson–Kessel
fuzzy clustering algorithm to divide the domain into fuzzy subspaces.
In our example the number of clusters was chosen by the trial-and-fail
method (c=3). The membership functions are shown in Fig. 3.
Fig. 7. The validation of fuzzy model with confidence interval.

http://www.ensic.u-nancy.fr/costwwtp
http://www.ensic.u-nancy.fr/costwwtp
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The verification of the fuzzy model output ĈNH4Nout
and the process

output CNH4Nout
are shown in Figs. 4 and 5, where the verification of the

fuzzy confidence interval is shown.
The validation of the fuzzy model and the confidence interval is

shown in Figs. 6 and 7. In Fig. 6 it is evident that the error between the
measured and estimated output variable is in some regions relatively
large. So in those regions the model is inadequate and does not
represent the behavior of the plant. The fuzzy model is, therefore, not
reliable for those regions. To avoid this problem we introduced the
confidence band in which we always find the output variable. The
validation of this band is, with some small violations, shown in Fig. 7.

5. Conclusion

A new method of confidence-interval identification, that is appli-
cable when a finite set of measurement data is available, has been
proposed. The idea is extended to the modelling of the optimal lower
and upper bound functions that define the band that contains the
whole measured output variable. This results in the lower and upper
fuzzy bar, which can be of great importance in the case of families of
functions where the parameters of the observed system vary within
certain intervals. In our example the proposed method is applied to
model the confidence interval of a highly nonlinearwaste-water treat-
ment plant. The proposed approach can be used in applications such
as process monitoring and fault detection, where a significant vio-
lation of the normal band means the irregular functioning of the
system.
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